
Science of the Total Environment 948 (2024) 174690

Available online 9 July 2024
0048-9697/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Classification machine learning to detect de facto reuse and cyanobacteria
at a drinking water intake
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• Supervised machine learning can detect
very low levels of algae and recycled
water.

• Mixture discriminant analysis had a
testing set accuracy >98 % for the 3
classes.

• Phycocyanin-like fluorescence helped
identify algal bloom events.

• UVA254 helped identify higher levels of
wastewater effluent.
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A B S T R A C T

Harmful algal blooms (HABs) or higher levels of de facto water reuse (DFR) can increase the levels of certain
contaminants at drinking water intakes. Therefore, the goal of this study was to use multi-class supervised
machine learning (SML) classification with data collected from six online instruments measuring fourteen total
water quality parameters to detect cyanobacteria (corresponding to approximately 950 cells/mL, 2900 cells/mL,
and 8600 cells/mL) or DFR (0.5, 1 and 2 % of wastewater effluent) events in the raw water entering an intake.
Among 56 screened models from the caret package in R, four (mda, LogitBoost, bagFDAGCV, and xgbTree) were
selected for optimization. mda had the greatest testing set accuracy, 98.09 %, after optimization with 7 false
alerts. Some of the most important water parameters for the different models were phycocyanin-like fluores-
cence, UVA254, and pH. SML could detect algae blending events (estimated <9000 cells/mL) due in part to the
phycocyanin-like fluorescence sensor. UVA254 helped identify higher concentrations of DFR. These results show
that multi-class SML classification could be used at drinking water intakes in conjunction with online instru-
mentation to detect and differentiate HABs and DFR events. This could be used to create alert systems for the
water utilities at the intake, rather than the finished water, so any adjustment to the treatment process could be
implemented.
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1. Introduction

Water quality events such as harmful algal blooms (HABs) and high
levels of de facto wastewater reuse (DFR) are potentially hazardous to
the public. Cyanobacteria (i.e., blue-green algae) are photosynthetic
prokaryotes commonly associated with HABs as some strains are capable
of producing taste and odor compounds or toxins (Liu et al., 2024; Shen
et al., 2023). For example, under some environmental conditions some
strains of the speciesMicrocystis aeruginosa are capable of producing the
toxin Microcystin-LR (Ouahid et al., 2005), a possible carcinogen in
humans (Pan et al., 2021) and a potent hepatotoxin (Weng et al., 2007).
This is merely one of many toxins that can be produced by algal species
(Centers for Disease Control and Prevention, 2016). Concentrations of
cyanobacteria can increase rapidly under certain environmental condi-
tions, including high temperatures, high nutrients, and slow water
movement. If some of these cyanobacteria are toxin-producing, these
events are called HABs (Beaver et al., 2018). According to the United
States Environmental Protection Agency (EPA), there were at least 281
notices for freshwater HABs from June 2nd to August 1st, 2017 in the
United States (U.S. Environmental Protection Agency, 2019), and
Schaeffer et al. (2022) found an increase in HAB extent in the U.S. from
2017 to 2020 of 6.9 %. Furthermore, climate change is expected to in-
crease the frequency, severity, and duration of HABs by increasing water
temperature and thermal stratification (Paerl and Huisman, 2009). Lake
Mead, a drinking water source for approximately 40 million people in
Nevada, Arizona, and California, is one of the bodies of water in which
these climate-affected HABs could be expected to occur with increased
frequency (Beaver et al., 2018; Milly and Dunne, 2020). Long-term
monitoring has revealed the phytoplankton communities in Lake Mead
have remained relatively stable (Beaver et al., 2018), as have the
phosphorous concentrations, the nutrient that could drive an algal
bloom, and the chlorophyll a concentrations (Hannoun and Tietjen,
2023).

Online instruments have become available for indirect detection of
cyanobacteria. While oxygen production rate has been proposed as a
proxy of microalgae concentration (Sarrafzadeh et al., 2015), eluci-
dating the impact of the algae in a complex water matrix would be too
difficult. Chlorophyll a, a pigment used in photosynthesis, can be
detected via absorbance or fluorescence (Choo et al., 2018; Myers et al.,
2013). However, chlorophyll a is found in both cyanobacteria and most
other algae (Choo et al., 2018). Fluorometers can also target the char-
acteristic wavelengths of phycocyanin (590–610 nm excitation and
660–685 nm emission) (Choo et al., 2018), a pigment found in cyano-
bacteria but not green algae (Chang et al., 2012). Online instrumenta-
tion is also commercially available for adenosine triphosphate (ATP), an
energy-carrying molecule in all known lifeforms. ATP has been proposed
for cyanobacteria monitoring due to its sensitive detection threshold and
strong correlations with cyanobacteria cell counts and optical measures
in controlled conditions (Greenstein and Wert, 2019). However, ATP is
not specific to cyanobacteria because of its presence in other biologically
active cells.

Another water quality event, DFR, occurs when there is wastewater
effluent at the drinking water intake and is widespread globally. In the
USA, approximately 25 % of drinking water intakes for drinking water
treatment plants serving >10,000 people were estimated to have >1 %
DFR under average streamflow conditions (Rice et al., 2015). The per-
centage of DFR is highly dependent on streamflow conditions. For
example, DFR in the Llobregat River in Spain was estimated to vary from
8 to 82 % (Drewes et al., 2017) and the Neosho River in Oklahoma is
estimated to vary from around 2 % under median conditions to 100 % at
the 5th percentile flow (Rice and Westerhoff, 2015). In lakes and res-
ervoirs, the percentage of recycled water is less variable due to the larger
dilution volume. DFR at the Southern Nevada Water Authority’s
drinking water intake in Lake Mead is currently approximately 1.4 %
DFR (Hannoun et al., 2021) but is expected to increase over time if lake
levels decline in response to climate change and drought (Milly and

Dunne, 2020). DFR can increase concentrations of anthropogenic
chemicals, pathogens, and fecal indicators. Burnet et al. (2019) found a
statistically significant correlation (p < 0.05) between flow at an up-
stream wastewater treatment plant (WWTP) and ß-D-glucuronidase ac-
tivity, which in turn correlates with E. coli. DFR correlated with
disinfection byproducts (DBPs) in drinking water systems in a watershed
in Virginia (Weisman et al., 2019). Modeled DFR and the DFR indicator
sucralose strongly correlated with per- and polyfluoroalkyl substances
(PFAS) in the Trinity River, Texas (Islam et al., 2023).

Alert systems are needed to notify drinking water utilities when
water quality events such as HABs or sudden increases in DFR are
beginning. Supervised classification machine learning applied to online
water quality data could potentially provide such a system. Most pre-
vious studies applying machine learning for event detection in the
drinking water field have focused on treated water in real or simulated
distribution systems (Arad et al., 2013; Asheri-Arnon et al., 2018; Dogo
et al., 2019). However, an alert system monitoring raw water at the
drinking water intake could detect events sooner, thus allowing more
time for corrective action. For example, mitigation strategies, such as
source control for nutrients promoting algae growth or increased ozone
dosing for algal toxins, could be implemented. Kibuye et al. (2021)
conducted a survey of 35 drinking water utilities and found that 68 % of
the utilities currently or had in the past implemented control strategies
to mitigate cyanobacterial blooms in their source water. The most
frequently used control strategies were aeration and algaecides, such as
copper sulfate or hydrogen peroxide.

In Lake Mead, increases in DFR would be much slower due to the
dilution, but knowing the trends would be useful for planning purposes.
Utilities with intakes at rivers or smaller volume reservoirs are more
likely to see spikes in DFR, so an alert system could be more beneficial.
Many published classification methods are binary (i.e., classify obser-
vations as either “Normal” or “Anomaly”) (Liu et al., 2020). However,
multiclass models that can predict among three or more categories [i.e.,
weighted k-nearest neighbors (kknn)] could provide more information
about the best course of action to utility operators. Alert systems in the
drinking water context must also be highly specific (e.g., less than one
false positive per week) to avoid complacency or poor allocation of re-
sources. However, achieving high specificity and sensitivity with raw
surface water quality data can be challenging due to instrument drift or
limited sensitivity, or differentiating natural diurnal and seasonal pat-
terns from events.

This study used supervised machine learning (SML) to rapidly detect
low levels of cyanobacteria in the raw water, enabling prompt detection
of the early onset of HAB events at the intake, allowing time for miti-
gation. While SML has been applied for HABs but focused on forecasting
major HABs weeks in the future (Fleming et al., 2019; Jeong et al., 2022;
Kim et al., 2021), this study focused on real time detection. Furthermore,
this study used multi-class SML classification to simultaneously monitor
for and detect low levels of DFR. While a previous study applied SML to
detect increases in DFR at levels of 2 % or more in surface waters
(Thompson and Dickenson, 2021), this study tested 0.5 % to 2 % DFR
levels. The models in the previous study could not reliably differentiate
between DFR and other events, such as stormwater. This study improved
upon that limitation through greater true positive sample size and
additional instrumentation. Overall, this study demonstrated the po-
tential of SML for water quality monitoring, demonstrating that low
concentrations of DFR and HABs at a drinking water intake can be
detected and differentiated. This would allow for more proactive water
management which could be necessary to ensure safe drinking water
and protect human health if water quality declines.

2. Methods

In this study, online water quality instruments measured water
quality in a pipe conveying raw water from Lake Mead. The data from
these instruments was recorded at 15-min intervals for one month.
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During this month, blending tests were conducted in which cyanobac-
teria or wastewater effluent were injected into the instrument sampling
line at known blending ratios. Observations were labeled “Normal,”
“Algae,” or “Wastewater.” The water quality data was then divided into
training and testing sets. Fifty-six classification models were screened on
the raw data with their default hyperparameters in the caret package
(version 6.0.94) (Kuhn, 2020, 2008) in R (version 4.3.1) (R Core Team,
2023). Four high performing models were then further evaluated with
(1) a wider range of hyperparameters, (2) the least important water
quality feature(s) omitted, and (3) various preprocessing methods to
correct for instrument drift, natural patterns, or random instrument
error.

2.1. Study area

Lake Mead is located on the Colorado River, on the border between
Nevada and Arizona (Fig. 1) and is the largest reservoir by volume in the
United States (Holdren and Turner, 2010). It provides water for drinking
and irrigation for over 25 million people (Holdren and Turner, 2010), so
maintaining the water quality and quantity is essential. However,
drought conditions have persisted in reservoirs in the southwestern U.S.
since 2000 (Beaver et al., 2018), and between 2000 and 2022, Lake
Mead has experienced a 71 % decrease in volume (Hannoun and Tietjen,
2023).

2.2. Online instruments

Six online instruments measured fourteen water quality features and
flow in a pipe conveying raw water from Lake Mead (Table S1). A
RealTech PL3500 (Ontario, Canada) measured absorbance at multiple
wavelengths along the UV–visible spectrum (200–800 nm). It recorded
three features: UVA254; an estimate of total organic carbon (TOC)

(expressed in mg/L) based on absorbances at 256, 280, and 322 nm; and
an estimate of chlorophyll a (expressed in μg/L) based on absorbances at
687, 689, 692, 719, and 722 nm. A BlueI 702 TurbiPlus Hydroguard
(Rosh Ha’ayin, Israel), which is no longer commercially available,
monitored basic water quality features, including turbidity, conductiv-
ity, pH, temperature, and redox potential (ORP). An Atrato Series 700
Ultrasonic Inline Liquid Flowmeter (United Kingdom) measured total
flow to the water quality instruments. A Ketos Shield (United States)
measured nitrate with a specified method reporting limit (MRL) of 0.5
mg/L, as well as dissolved oxygen (DO). A Turner Designs Enviro-T2 In-
Line Fluorometer (California, United States) with Red Excitation LED
monitored a phycocyanin-like fluorescence. Relative fluorescence units
were converted to an estimated concentration in μg/L based on manu-
facturer instructions. A Hach EZ7300 Series Online Microbiology Load
Analyzer for ATP (United States) measured total, free, and intracellular
ATP.

All instruments were maintained and calibrated, zeroed, or validated
on August 29th, 2019, two days before the start of the training set. The
RealTech PL3500 cleaned itself automatically with a calcium, lime, and
rust removal solution every 48 h and it contained a dehumidifier that
was recharged weekly on Thursdays. The ATP Analyzer automatically
cleaned itself daily with NaOH and HCl and was recalibrated on
September 19th, 2019. The BlueI Hydroguard was manually cleaned
every Thursday. See Table S2 for a timeline of maintenance and
blending events.

2.3. Benchtop water quality methods

The water quality of the raw Lake Mead water and the stocks to be
used for blending events were measured offline to (1) assess what level
of blending or dilution might be detectable and (2) check the stability of
the stocks between the training set blending event and testing set
blending event (Section 2.7). pH, conductivity, turbidity, and UVA254
were measured as described in Thompson and Dickenson (2021).
UVA254 was measured with 0.45 μm filtration as the standard method
and without prefiltration to simulate UVA254 as measured by the Real-
tech PL3500 (Potter and Wimsatt, 2009). ATP was measured using the
same instrument as the online ATP data using the instrument’s grab
sample line. Nitrate and nitrite were determined by ion chromatography
with EPA Method 300.0 (Pfaff, 1993) and optical density benchtop
measurements were taken with the Spectronic 20D+ (Thermo
Scientific).

2.4. Data frequency, acquisition, and interpolation

Data was collected for one month, September 2019. The Hydro-
guard, PL3500, flowmeter, and phycocyanin-like fluorometer had a
measurement frequency of 15 min or less and were connected to the
drinking water utility’s SCADA system via 4–20 mA analog outputs.
Data from these instruments were downloaded via PI Datalink at 15-min
intervals. Data from the Ketos Shield was downloaded from the in-
strument’s web portal. Nitrate data was collected hourly. Dissolved
oxygen (DO) was recorded at irregular intervals ranging from hourly to
more than once per minute. Data from the Ketos Shield were interpo-
lated onto the same time vector as the SCADA-compatible instruments
using the approx function in R with a step function giving full weight to
the left value. That is, at each 15-min interval, the Ketos datapoint was
the most recently recorded datapoint before that 15-min interval. The
ATP Analyzer took measurements at approximately 15-min intervals,
though not necessarily in alignment with the time vector of the SCADA-
compatible instruments (i.e., not at precisely 12:00, 12:15, etc.). Thus,
data from this instrument was also interpolated with the same function
applied to the Ketos Shield data. Calibrations and automated cleanings
were excluded from the ATP data.Fig. 1. Map of Lake Mead.
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2.5. Time of week feature

Real water quality events—as well as certain potential sources of
error—would be more likely to occur at certain times of day or week.
Some cyanobacteria have diurnal cycles with photosynthesis peaking in
late afternoon and nitrogen fixation occurring after dark (Sherman et al.,
1998). Wastewater flow—and thus DFR—has a distinctive diurnal
pattern and can differ between weekdays and weekends (Atinkpahoun
et al., 2018; Tchobanoglous et al., 2002). Routine sensor maintenance is
typically scheduled for certain times of the week (i.e., in the case of this
study, Thursday mid-day). Therefore, a feature was calculated to inform
models of the time of week. Specifically, values were calculated as the
number of seconds since midnight on Sunday divided by the total
number of seconds in one week (604,800 s). Thus, a value of 0.001
would represent Monday shortly after midnight, 0.999 would represent
Sunday shortly before midnight, and 0.5 would represent Thursday at
noon.

2.6. Blending stock sampling and preparation

Tertiary wastewater effluent was collected from a large (>400,000
m3/day) wastewater treatment plant (WWTP) in Nevada and stored at
4 ◦C for less than one week. The WWTP employs a modified Johannes-
burg process for biological phosphorus removal followed by alum
coagulation and dual media filtration. The final UV-disinfected effluent
from this WWTP flows into Lake Mead via the Las Vegas Wash (Blunt
et al., 2018). The effluent sample was collected after dual media filtra-
tion but before UV disinfection, as was done in Thompson and Dick-
enson (2021). The water quality of this wastewater effluent sample is in
Table S3.

M. aeruginosa is a common species of cyanobacteria in freshwater
HABs, many strains of which produce microcystin-LR (Ouahid et al.,
2005). However, the strain UTEX 2061 does not produce microcystin-LR
and lacks the gene associated with the production of this toxin. Thus, for
laboratory safety and to avoid the accidental introduction of a toxic
cyanobacterial strain into the local environment, UTEX 2061 was
selected as a surrogate for wild M. aeruginosa or HABs. UTEX 2061 was
purchased from the Culture Collection of Algae at the University of
Texas at Austin. In duplicate, 15 mL of stock strain was added to 150 mL
of Bold 3 N Medium and incubated in foil-capped 250-mL Erlenmeyer
flasks on a shaker table at 150 rpm in an incubator at 20 ◦C with a 12/12
h light/dark cycle. Based on experiments with a different strain of
M. aeruginosa incubated under the same conditions, approximately two
weeks of lag phase followed by approximately two weeks of rapid
growth were anticipated (Greenstein and Wert, 2019). So, the stocks
used in the blending events during the training and testing sets were
incubated for 20 and 22 days, respectively, to be relatively stable in the
middle of the lag phase. The water quality for a 1:100 dilution of the
UTEX 2061 with Lake Mead water is in Table S4. Cell counts for the
UTEX 2061 stock were calculated from optical density measurements, as
described by Greenstein and Wert (2019). UTEX 2061 stock water
quality was measured as a dilution in Lake Mead water (1) to simulate
M. aeruginosa ATP generation in Lake Mead water, (2) to fall within
benchtop method calibration ranges, (3) to avoid cell lysis with deion-
ized water, and (4) due to water volume constraints for analysis.

2.7. Blending events

Blending events were conducted as in Thompson and Dickenson
(2021). A 0.5-in. PVC pipe conveyed raw water from Lake Mead to the
online instruments. The effluent from the instruments went to a septic
tank. Wastewater effluent or UTEX 2061 stock were diluted with Lake
Mead water at 50:50 or 1:100 ratios, respectively, in a 17-L carboy on a
stir plate. The diluted contaminant stocks were then injected into the
pipe with a peristaltic pump upstream of an inline static mixer to ensure
the waters were well-blended before reaching the instruments. To verify

the intended flow rate and blending ratio, the volume in the carboy was
manually recorded at 15-min intervals. For each blending event, the
diluted wastewater effluent or UTEX 2061 stock was blended into the
pipe at three blending ratios for two hours each, consecutively from
lowest to highest to simulate the gradual, low-level onset of a real event.
True HABs or periods of elevated DFR would likely last longer than the
total six hours, but nevertheless this approach sufficed to evaluate the
ability of SML to detect the onset of events. The overall blending ratios
were 0.5 %, 1 %, and 2 % for wastewater effluent and 0.005 %, 0.015 %,
and 0.045 % for the UTEX 2061 stock (corresponding to approximately
950 cells/mL, 2900 cells/mL, and 8600 cells/mL). One blending event of
each type was conducted during the training set and then replicated
during the testing set.

2.8. Supervised machine learning methods

Data were labeled as “Normal,” “Wastewater”, or “Algae,” based
solely on which if any blending events were occurring or if the influent
was raw surface water. In terms of classification performance metrics,
Wastewater and Algae were considered positives while Normal was
considered negative. In practice, multiple approaches could be consid-
ered for automated alert systems during times of known maintenance (i.
e., a “Maintenance” alert provided, the alert system disarmed prior to
maintenance, or alerts ignored during maintenance). In this study, the
maintenance events were labeled as Normal.

SML was conducted using the caret package in R. The caret package
was chosen because it allows the screening of a large number of machine
learning model types with consistent cross-validation and testing pro-
tocols. This creates the possibility of identifying effective but previously
underutilized models for time series water quality SML analysis. Further
research could use model-specific packages for greater flexibility with
hyperparameter tuning. The dataset was split 60:40 into a training set
and testing set. While 80:20 is the more common or default data split in
machine learning, 60:40 has also been used, including in studies
applying SML to surface water quality (Khullar and Singh, 2020; Liu
et al., 2023). A smaller training set would be beneficial because it re-
duces computational requirements and training time, allowing for
quicker experiments. The split was consecutive, not random, (1) to
ensure one blending event of each type in each set, (2) to enable time
series-specific preprocessing methods, and (3) to simulate a scenario in
which a drinking water utility were to train models based on full-scale
data from actual events to detect future similar events. The training
set was from September 1st through 18th and the testing set was from
September 19th through 30th, 2019. Before each model training, the
seed for random number generation was set to 1 with the set.seed
function for reproducibility. Models were trained on the training set and
hyperparameters were selected based on highest average accuracy over
25 bootstraps of the training set (hereon referred to as “training set
accuracy”). Multiple measures of error were calculated including accu-
racy (the overall percentage of observations for which the model pre-
dicted the correct category), sensitivity (how often the model predicted
the correct category when a given category was occurring), and total
false alerts (how often the model predicted Wastewater or Algae when
the correct label was Normal).

Fifty-eight models were initially included in this study based on
whether they had achieved at least 90 % testing set accuracy or 98.5 %
training set accuracy with raw data from a related prior study
(Thompson and Dickenson, 2021). These 58 models were screened on
the raw data with default hyperparameter ranges in the caret package.
Fuzzy Rules Using Chi’s Method (FRBCS.CHI) and Fuzzy Rules with
Weight Factor (FRBS.W) were omitted as too computationally intensive,
leaving a total of 56 tested models, including several neural networks
(Table S5). Four models were selected for further evaluation based on
the following criteria: the two with highest training set accuracy or the
two with highest testing set accuracy.

For the four selected models, preprocessing methods were tested as
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described in Section 2.9. Next, least important features were identified
using the varImp function and omitted to determine whether equal or
greater accuracy could be achieved in equal or less computation time.
Lastly, models were tested across a wider range of hyperparameter
settings. Fig. 2 shows a schematic of the development of the models.

2.9. Data preprocessing

2.9.1. Smoothing with rolling median
Certain features (e.g., intracellular ATP) appeared to have occasional

high outliers that could potentially cause false alerts (Fig. S1). However,
these high outliers tended to be non-consecutive (i.e., rarely, if ever,
occurring on consecutive 15-min intervals). Thus, a method of
smoothing or data cleaning was studied in which each datapoint was
replaced by the median of the past three datapoints, including itself. An
example with intracellular ATP is shown in Fig. S1. This way, outliers
would be omitted unless two occurred consecutively. This method was
expected to reduce the number of false positives while only delaying
event detection by 15 min.

2.9.2. Difference from rolling median
Many water quality features (i.e., temperature, ORP, pH, and con-

ductivity) had long-term trends due to seasonal patterns or instrument
drift. For example, mean daily temperature gradually declined from
around 18 ◦C to around 16 ◦C over the month of September (Fig. S2). To
correct for this drift, the median of the previous 24 h (i.e., 96 datapoints)
was calculated. Then, that 24-h rolling median was subtracted from each
datapoint. The output of this preprocessing method is hereon referred to
as “seasonally adjusted” and is shown for temperature in Fig. S2.

2.9.3. Diurnal modelling
For water quality features with visually apparent diurnal patterns, a

sinusoidal model was fit using data during Normal observations in the
training set and the nls function (Fig. S2). Sinusoidal models were fit
based on the equation:

x = a+ b*sin
(

t*2π
86,400 s

+ c
)

(1)

where x is the modeled feature, a is vertical shift, b is amplitude, t is time
in seconds, and c is horizontal shift. Predictions from these models were
then made for all observations in the training and testing sets. The dif-
ference between the sinusoidal model predictions and the seasonally
adjusted data were calculated and are hereon referred to as “diurnally

adjusted”. The seasonal and diurnal adjustment procedures were con-
ducted both with and without prior smoothing as described in Section
2.9.1.

3. Results

3.1. Water quality

The median water quality data for Lake Mead (Normal condition) is
shown in Table 1, while the water quality features for the tertiary
wastewater effluent and a 1:100 dilution of the UTEX 2061 stock are
shown in the SI (Tables S3 and S4). Except for total ATP and intracellular
ATP, median water quality was within 10% between the training set and
testing set, indicating little seasonal change within the month of
September or sensor drift.

Cell count data was not measured directly for the UTEX 2061 stock or
its 1:100 dilution. However, based on a linear model from Greenstein
and Wert (2019), the average OD730 from the UTEX 2061 stocks would
indicate a cell count of ~1.8 × 107 cells/mL, which is the value we used
in this study to estimate cell concentration. However, based on another
linear model from that same study, the intracellular ATP of the UTEX

Fig. 2. Schematic of machine learning workflow.

Table 1
Median water quality of Lake Mead, blending events omitted.

Feature Units Median

Training set (n =

1729)
Testing set (n =

1152)

Nitrate mg/L as
N

<0.5 <0.5

Dissolved oxygen mg/L 7.2 7.2
Flow L/min 1.54 1.44
Total organic carbon
(TOC)

mg/L 2.75 2.75

UV absorbance at 254 nm 1/cm 0.0604 0.0602
Chlorophyll a μg/L 0.0513 0.0475
Phycocyanin-like
fluorescence

μg/L 0.62 0.61

Temperature ◦C 17.4 15.9
Total ATP pg/mL 7.39 9.16
Free ATP pg/mL 3.0 2.7
Intracellular ATP pg/mL 4.07 6.35
pH 7.89 7.87
Conductivity μS/cm 869 890
Turbidity NTU 0.31 0.33
Redox potential (ORP) mV 830 844

E. Clements et al.
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2061 stock—estimated from the 1:100 dilution after subtracting the
background intracellular ATP in the LakeMeadwater—indicates the cell
count would be ~1.5 × 106 cells/mL. Since ATP per cell could depend
on factors like growth phase, light availability, or health of the culture,
OD730 was used for the primary estimate of cell count.

The training set raw data is plotted in Fig. 3. The features are plotted
against the standard deviations from their means and grouped by the
extreme datapoints, so it is easier to see deviations in the different fea-
tures. Some of the features, specifically temperature, pH, conductivity,
and ORP, had visually apparent diurnal patterns and so were diurnal
adjusted based on sinusoidal models as in Section 2.9.3. The sinusoidal
models converged and had statistically significant amplitude in all cases
(Table S6).

3.2. Screening results

Of the 56 models that were screened on the raw data (Table S5), four
were selected for further evaluation: the two with highest training set
accuracy and the two with highest testing set accuracy (Table 2). The
models selected for further analysis based on these criteria were logistic
regression boosting (LogitBoost), mixture discriminant analysis (mda),

bagged flexible discriminant analysis (FDA) using generalized cross-
validation (GCV) pruning (bagFDAGCV), and extreme gradient boost-
ing (xgbTree).

3.3. Mixture discriminant analysis

mda is a modification of linear discriminant analysis in which the
distribution of each class is assumed to consist of a mixture of super-
imposed Gaussian distributions rather than a single Gaussian distribu-
tion (Hastie and Tibshirani, 1996). Thus,mda is better suited than linear
discriminant analysis for non-normally distributed data. Several features
were non-normally distributed, as can be seen with Quantile-Quantile
plots (Fig. S4). Mixture discriminant analysis (mda) had the highest
testing set accuracy using the raw data, 97.74 %. This testing set accu-
racy was significantly above the NIR (p-value = 0.0003). The NIR was
95.83 % and represents the accuracy of a model that always assumes the
most common class in the data, which was Normal in this study.mda had
the second highest cyanobacteria sensitivity (62.5 %) and only 3 false
alerts, but the lowest Wastewater sensitivity (41.67 %) among selected
models. Smoothing lowered the testing set accuracy from 97.74 % to
94.01% and seasonally adjusting made the testing set accuracy 97.66%.

Fig. 3. Training set data for (A) UVA254 and TOC; (B) phycocyanin-like fluorescence (phycocyanin) and intracellular ATP; and (C) Conductivity, ORP, pH, and
temperature. Shaded gray areas represent blending with wastewater effluent to simulate DPR and shaded green areas represent mixing events with higher con-
centrations of cyanobacteria. Some outliers are excluded from the range of the y-axis and the whole time period is not shown to highlight the impacts of blending
events. Features less impacted by the blending events are also omitted for clarity. The full dataset is provided in the SI (Fig. S3).
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Both seasonally adjusting and smoothing the data resulted in a testing
set accuracy of 97.05 %. Therefore, the data was not seasonally adjusted
or smoothed. Diurnally adjusting the pH increased the testing set ac-
curacy to 97.83 %, and also diurnally adjusting the temperature and
conductivity resulted in a testing set accuracy of 98.09 % (Table 3).
From the seven false positives, two were maintenance events labeled as
Normal and predicted as Wastewater, four were Normal events pre-
dicted as Algae, and one was a Normal event labeled as Wastewater. So,
omitting maintenance or separating it as a prediction class would not
have rectified the majority of false alerts. Chlorophyll a was the least
important feature but excluding it decreased the testing set accuracy to
87.32 %. The hyperparameter in mda is subclasses, the number of
Gaussian distributions assumed to be within the mixture distributions.
Over the default range in the caret package, two to four, two subclasses
resulted in the highest training set accuracy. Increasing the number of
subclasses decreased the testing set accuracy. Fig. 4 shows the raw
testing set results for mda, with false positives and false negatives
labeled. False positives occurred when the model predicted an Algae or
Wastewater event when it was Normal, and false negatives occurred
when it was Normal, and the model predicted an Algae or Wastewater
event. The SI contains a zoomed in figure of UVA254 and phycocyanin-
like fluorescence (Fig. S5) to better see the false positives and false
negatives. Fig. S6 is the full dataset for the optimized version of mda.

If the data was seasonally adjusted and then optimized by diurnally
adjusting conductivity and temperature and omitting flow and nitrate,
the testing set accuracy was 98.00 % (p-value = 3.58 × 10− 5), with 1
false alert. The cyanobacteria sensitivity was 66.7 % and theWastewater
sensitivity was 41.7 %. While the testing set accuracy is lower, the lower
number of false positives could be beneficial, depending on the priorities
of the model user, so seasonal adjustment might be advantageous.

3.4. Logistic regression boosting

Logistic regression boosting (LogitBoost) is an implementation of
gradient boosting framework by Friedman et al. (2000) and Friedman

(2001), where a series of weak learners are combined to create a
stronger predictive model. LogitBoost uses logistic regression as the weak
learners for classification. It had the highest training set accuracy on the
raw data, 99.75 %, but a testing set accuracy of just 92.42 %, indicating
overfitting (Table 2). LogitBoost had 58 false alerts, the most of any of the
models selected for further testing, a Wastewater sensitivity of 72.72 %
and a cyanobacteria sensitivity of 12.50 %. Smoothing the data
increased the testing set accuracy to 95.49 % and seasonal adjustment
also increased the testing set accuracy, to 96.78 %. However, first
smoothing and then applying seasonal adjustment resulted in a lower
testing set accuracy of 96.16 % so the data was seasonally adjusted but
not smoothed. While diurnal adjustment for each feature individually
led to an increase in testing set accuracy to 96.70 % for pH, 97.13 % for
conductivity, 96.95 % for ORP, and 96.88 % for temperature, diurnal
adjustments on all features had a testing set accuracy of 96.96 %. The
highest testing set accuracy (97.13 %) resulted from diurnally adjusting
pH and conductivity. Nitrate was the least important feature and
excluding it increased the testing set accuracy to 97.82 % but also
excluding flow, the next least important feature, reduced the testing set
accuracy to 97.04 %. The best tune was with 42 boosting iterations
(testing set accuracy of 97.82%) (Table 3), but it was only 0.006%more
accurate than the default tune, which used 31 iterations. There was only
one false alert, in which the model predictedWastewater when the event
was Normal. Although the test set accuracy was less than the NIR on the
raw data, after the preprocessing and optimization, the testing set ac-
curacy was significantly over the NIR (p-value = 6.98 × 10− 4). Fig. S7
shows the testing set results for LogitBoost.

3.5. Bagged FDA using GCV pruning

Bagged flexible discriminant analysis (FDA) using generalized cross-
validation (GCV) pruning can capture nonlinear relationships between
the predictors and classes with GCV pruning to avoid overfitting.
Bagging, or bootstrap aggregating, creates subsets of the training data by
sampling with replacement, resulting in certain values being repeated or

Table 2
Summary of screening results with raw data. Full screening results are in Table S5.

Model Abb. Training set
accuracy

Testing set
accuracy

Wastewater effluent
sensitivity

Cyanobacteria
sensitivity

p-Value Total false
alerts

Reason selected for
further analysis

Mixture discriminant
analysis

mda 98.99 % 97.74 % 41.67 % 62.50 % 3.0 × 10− 4 3 1st testing set
accuracy

Logistic regression
boosting

LogitBoost 99.75 % 92.42 % 72.73 % 12.50 % 1 58 1st training set
accuracy

Bagged FDA using
GCV pruning

bagFDAGCV 99.09 % 97.66 % 75 % 87.50 % 5.7 × 10− 4 18 2nd testing set
accuracy

Extreme gradient
boosting

xgbTree 99.71 % 93.84 % 54.17 % 12.50 % 1 39 2nd training set
accuracy

Table 3
Summary of optimized models.

Abb. Preprocessing Tuning Features
excluded

Cohen’s
kappa

Testing set
accuracy

p-Value Total
false
alerts

Most important features

mda Diurnally adjusted
(pH, Cond., Temp)

Default None 0.745 98.09 % 1.6 × 10− 5 7 Phycocyanin-like
fluorescence, day, pH,
UVA254, and TOC

LogitBoost Seasonally adjusted
(All) and diurnally
adjusted (pH, Cond.)

nIter = 42 Nitrate 0.620 97.82 % 7.0 × 10− 4 1 Conductivity, day,
phycocyanin-like
fluorescence, UVA254, and
chlorophyll a.

bagFDAGCV None Default None 0.739 97.66 % 5.7 × 10− 4 18 Phycocyanin-like
fluorescence, TOC, pH,
UVA254, and nitrate

xgbTree Seasonally adjusted
(All) and diurnally
adjusted (pH)

nrounds = 100, max_depth = 1, eta
= 0.15, gamma = 0,
colsample_bytree = 0.6,
min_child_weight= 1, subsample= 1

Turbidity 0.551 97.40 % 3.1 × 10− 3 1 UVA254, phycocyanin-like
fluorescence, day, pH, and
nitrate
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omitted from different subsets. FDA is an extension of linear discrimi-
nant analysis that can be used for nonlinear relationships for classifi-
cation which can be applied to the bootstrapped datasets (Mallet et al.,
1996). GCV pruning can be applied to the FDA models to determine the
optimal level of complexity and prevent overfitting. Bagged FDA using
GCV Pruning (bagFDAGCV) had the second highest testing set accuracy
using the raw data, 97.66 % (Table 2), which was significantly above the
NIR (p-value = 0.00057). It had the highest Wastewater sensitivity (75
%) and the highest cyanobacteria sensitivity (87.5 %) and 18 false alerts.
Smoothing substantially decreased the testing set accuracy to 52.00 %,
and seasonal adjustment resulted in a testing set accuracy of 97.05 %.
The raw data next underwent diurnal adjustment for pH, ORP, con-
ductivity, and temperature, but these all also decreased the testing set
accuracy compared to the raw data. Conductivity was the least impor-
tant feature, but omitting it resulted in a testing set accuracy of 97.48 %.
The default tuning, with the maximum degree of interaction for FDA
being 1, was the most accurate. Therefore, bagFDAGCV underwent no
preprocessing and was most accurate with the raw data, the default
tuning, and all the features included (Table 3). Of the 18 false alerts, four
were when the model predicted Wastewater when it was Normal, 13

were when the model predicted Algae when it was Normal, and one
occurred when the model predicted Algae during a maintenance event
labeled as Normal. Results for bagFDAGCV are shown in Fig. S8. If the
data did undergo seasonal adjustment and was then optimized, the pH
and conductivity were diurnally adjusted, and all the features were
included. This resulted in a lower testing set accuracy of 97.31 %, but
only had 6 false positives.

3.6. Extreme gradient boosting

Extreme gradient boosting (xgbTree) is an extension of the gradient
boosting framework by Friedman et al. (2000) and Friedman (2001)
using decision trees (Chen and He, 2023). Extreme gradient boosting
uses regularization, parallel processing, and tree pruning, and has more
flexibility than traditional gradient boosting. Extreme gradient boosting
(xgbTree) had the second highest training set accuracy on the raw data,
99.71 %, but its testing set accuracy was below the NIR at 93.84 %,
indicating overfitting (Table 2). The Wastewater sensitivity was 54.17
%, the cyanobacteria sensitivity was 12.50 %, and there were 39 false
alerts. Smoothing improved the testing set accuracy to 95.31 % and

Fig. 4. Testing set results for the optimized version of mda for (A) UVA254 and TOC; (B) phycocyanin-like fluorescence (phycocyanin) and intracellular ATP; and (C)
Conductivity, ORP, pH, and temperature. False positives are shown with + and false negatives are labeled with X. Shaded gray areas represent blending with
wastewater effluent to simulate DPR and shaded green areas represent mixing events with higher concentrations of cyanobacteria. Some outliers are excluded from
the range of the y-axis and the whole time period is not shown to highlight the impacts of blending events. Features less impacted by the blending events are also
omitted for clarity. The full dataset is provided in Fig. S6.
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seasonal adjustment improved the testing set accuracy to 96.44 %.
However, first smoothing and then applying seasonal adjustment
resulted in a lower testing set accuracy, 95.83 %. Diurnally adjusting pH
after seasonal adjustment improved the testing set accuracy to 96.88 %
but also diurnally adjusting temperature, ORP, or conductivity did not
improve accuracy. The least important feature for xgbTree was turbidity
and omitting turbidity increased the testing set accuracy to 96.96 % but
omitting chlorophyll a, the next least important feature, reduced testing
set accuracy to 96.79 %. The only false positive occurred when the
model predicted Wastewater for a Normal event. The number of
boosting iterations (nrounds), the maximum tree depth (max_depth), the
shrinkage factor (eta), the minimum loss reduction (gamma), subsample
ratio of columns (colsample_bytree), minimum sum of instance weight
(min_child_weight), and the subsample percentage all underwent tuning.
The best tune (nrounds = 100, max_depth = 1, eta = 0.15, gamma = 0,
colsample_bytree = 0.6, min_child_weight = 1, subsample = 1) resulted in
a testing set accuracy of 97.40%with a p-value of 3.12× 10− 3 (Table 3).
Results for the optimized xgbTree model are shown in Fig. S9.

4. Discussion

4.1. Detection sensitivity

While a previous SML study was able to detect 2, 5, and 10 % of DFR
(Thompson and Dickenson, 2021), this study attempted lower blending
ratios of 0.5. 1, and 2 % wastewater effluent and certain SML algorithms
were still able to detect the lowest levels evaluated. The blending ratios
for the algal stocks were also low (0.005 %, 0.015 %, and 0.045 % of the
UTEX 2061 stock, corresponding to approximately 950 cells/mL, 2900
cells/mL, and 8600 cells/mL) and yet the lowest levels were also
detected. For example, the bagFDAGCV model had a Wastewater sensi-
tivity of 75 % and a cyanobacteria sensitivity of 87.5 %, demonstrating
that it could detect the blending ratios down to 0.5 % and 0.005 %, for
DFR and the UTEX 2061 stock, respectively (Table S7). bagFDAGCV was
able to detect 0.5 % DFR at the fourth datapoint at 15-min intervals
(after 45 min) and detected 0.005 % UTEX stock solution (~950 cells/
mL) on the third datapoint (after 30 min). However, mda (as seen in
Fig. 4) had a Wastewater sensitivity of only 50 %, though the cyano-
bacteria sensitivity was also 87.5 %.

By detecting such low blending ratios, the SML would be able to
warn of early-onset events before they reach a hazardous level. A 0.5 %
increase in DFR could be considered minor relative to the current esti-
mated 1.4 % DFR at SNWA’s intake in Lake Mead (Hannoun et al.,
2021). Algal blooms have been defined as extremely high phytoplankton
cell densities (typically above 20,000 to 100,000 cells/mL) (Graham
et al., 2008), which is a similar range that drinking water utilities have
used as alert levels for their source water monitoring (Kibuye et al.,
2021). A previous study investigated theMicrocystis cell counts in urban
pond algal blooms in Northern Kentucky and found concentrations up to
86,000 cells/mL (de la Cruz et al., 2017). In fact, the 0.005% blending of
the UTEX 2061 stock (~950 cells/mL) was not detected with the ATP
and OD730 benchtop methods in this study (i.e., approximately 0.9 mg/
L intracellular ATP and 0.000017 1/cm OD730). The phycocyanin
sensor had clear spikes in the UTEX 2061 stock blending events
(Fig. S10), indicating the sensitivity of this sensor relative to benchtop
methods and its usefulness for monitoring algal blooms. Similarly, there
was a spike for UVA254 during the Wastewater events, indicating it
would be a useful sensor to monitor for increased DFR.

4.2. False alerts

A false alert could lead to poor allocation of resources or a tendency
to ignore the alarms, especially in this case considering the blending
levels would be sub-hazardous. Therefore, false positives could be
considered a more important error type than false negatives for the
levels in this study, though with higher blending ratios the false

negatives could be more consequential. Thus, it is important to note that
two of the optimized models (LogitBoost, and xgbTree) had only 1 false
alert, thoughmda had 7 and bagFDAGCV had 18. Considering the testing
set covered 12 days of data, LogitBoost and xgbTree would meet a crite-
rion of nomore than one false alert per week, whilemda and bagFDAGCV
would not. Under this requirement, LogitBoost would be the best of the
optimized models.

4.3. Unbalanced data performance metrics

This study also had many more datapoints classified as Normal than
as Algae or Wastewater, leading to an unbalanced dataset, which can
result in poorer predictive performance (Zeinolabedini Rezaabad et al.,
2023). If a model only ever predicted Normal, it would have an accuracy
of 95.83 % (the NIR). A better assessment technique could be looking at
the balanced accuracy, which is the accuracy if there were equal
amounts of data from each class. Comparing optimized models, bagF-
DAGCV had the highest testing set balanced accuracy, 86.96 %.mda had
had the highest testing set accuracy but its balanced accuracy was lower
at 78.95 %. Among models with fewer than one false alert per week,
LogitBoost had a higher balanced accuracy of 64.46 % than xgbTree
(59.69 %).

Cohen’s Kappa is another way to assess classification models that is
consistent across studies despite unbalanced data. Cohen’s Kappa
compares the agreement from correct classifications and from classifi-
cations that could be due to chance (Cohen, 1960). A value of 1 indicates
there is perfect agreement, a value of 0 indicates the agreement is equal
to what would be expected from chance. Mda had a kappa of 0.745,
LogitBoost had a kappa of 0.620, bagFDAGCV had a kappa of 0.739, and
xgbTree had a kappa of 0.551. The higher overall accuracy led to higher
kappa values, with mda having the highest kappa and testing set accu-
racy. If mda and bagFDAGCV were excluded as having too many false
alerts, then LogitBoost would be the best remaining model in terms of
balanced accuracy and Cohen’s Kappa.

4.4. Preprocessing methods and hyperparameter tuning

Smoothing the data by taking the median of three data points
decreased accuracy in all cases. With this approach, the detection of an
event was automatically delayed an additional 15 min and once the
event ended, there would be an additional false positive after the event.
So, despite smoothing removing any non-consecutive random outliers, it
was not retained in any of the optimized models.

Seasonal adjusting by subtracting the 24-h rolling median only
improved two out of the four models, xgbTree and LogitBoost. If the other
two models (mda and bagFDAGCV) did have their features seasonally
adjusted and were then optimized, they had fewer false positives (7 vs. 1
for mda and 18 vs. 6 for bagFDAGCV) without much loss in accuracy
(98.09 % vs. 98.00 % formda and 97.66 % vs. 97.31 % for bagFDAGCV).
Therefore, if minimizing false positives were the priority, seasonal
adjustment might be useful for all models. If there needed to be less than
one false alert per week, seasonally adjusted mda would be the most
accurate model (Cohen’s kappa was 0.686). When bagFDAGCV and mda
were not seasonally adjusted, most of the false alerts were the model
predicting Algae when the actual condition was Normal. Without the
seasonal adjustment, gradual upward sensor drift of the phycocyanin-
like fluorescence may have caused these false alerts (Fig. S10).

Four features had clear diurnal trends: pH, temperature, conductiv-
ity, and ORP (Fig. 3C). Three of the models had increased accuracy with
diurnal adjustments of certain features, making diurnal adjustment the
most widely effective of the preprocessing methods evaluated. However,
the beneficial diurnally adjusted features were different between
models. For example, formda, diurnal pH, conductivity and temperature
adjustments resulted in the highest accuracy, while only pH was diur-
nally adjusted for xgbTree. These results indicate (1) that SMLmodels are
generally able to handle raw data for surface water quality, (2) the best
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preprocessing methods are model-specific.
Each of these four models’ hyperparameters underwent tuning for

increased accuracy but this only improved two of the four models, and
the improvements in testing set accuracy were small. For LogitBoost, it
was <0.006 % and increased the number for false positives from 0 to 1.
For xgbTree, adjusting eta to 0.15 improved the accuracy from 96.96 %
to 97.40 %. The low impact of hyperparameter tuning indicates the
default options within caret were suitable for this dataset or the selected
models were not highly sensitive to hyperparameter settings.

4.5. Feature importance

UVA254, TOC, and turbidity had previously been found to be useful
features for wastewater effluent detection with SML (Thompson and
Dickenson, 2021). It was hypothesized that ATP and phycocyanin-like
fluorescence would aid algal bloom even detection based on other
literature (Choo et al., 2018; Greenstein and Wert, 2019). Even features
that appeared relatively noisy or did not have clear visual peaks during
the blending events were useful for assessing whether the overall water
quality was typical. This was determined by ranking features by
importance, eliminating the least important feature, and determining if
the accuracy remained the same or improved. Among the optimized
models, two (mda and bagFDAGCV) were most accurate when using all
the features, and the other two had only one feature excluded. Nitrate
was excluded in LogitBoost and turbidity was excluded in xgbTree.
Turbidity did not differ greatly between the Lake Mead water (around
0.3 NTU) and the tertiary wastewater effluent (around 0.4 NTU)
(Tables 1, S3). Nitrate as measured by the Ketos Shield spiked at times
that did not correspond to the blending events (Figs. S4 and S7).

The most important features varied among the chosen models. For
example, nitrate was one of the most important features for bagFDAGCV
and xgbTree, but LogitBoost was more accurate without including it.
Wang et al. (2024) used machine learning to predict the chlorophyll a
concentrations in a lake recharged by recycled water using the differ-
ence in nutrients between the lake and recycled water. They found ni-
trate from the recycled water was the key factor for algal bloom control,
especially when there were higher temperatures. Lake Mead is phos-
phorous, not nitrogen limited (Hannoun and Tietjen, 2023), so the most
important features for the machine learning models will also depend on
the water matrices. Conductivity was the most important feature for
LogitBoost but not among the top five variables for the other optimized
models. Nonetheless, phycocyanin-like fluorescence and UVA254 were
among the top five important features for all four optimized models,
helping identify Algae and Wastewater events, respectively. This
outcome is reasonable considering their clear peaks during events
(Figs. 3 and 4). TOC also had visible peaks duringWastewater events but
may have been deemphasized by certain models due to its correlation
with UVA254. Other studies have used machine learning to predict
chlorophyll a in lakes as a proxy for algal blooms (Chen et al., 2024;
Wang et al., 2024), though phycocyanin-like fluorescence might provide
more information for identifying cyanobacteria proliferation.

4.6. Study limitations

The experiments performed for this study occurred within one
month, which did not capture the full range of seasonal variations in
temperature and nutrient concentrations that occur throughout the year
in Lake Mead. However, seasonal adjustment was included as a pre-
processing technique to adjust for these variations or possible instru-
ment drift. While the limited timeframe did not cover all possible
conditions, this experiment showed that SML was successful in detecting
algae and DFR. Since water utilities would need to train their models on
data collected at their specific intake, demonstrating that this technique
was effective was the priority of this study, rather than the collection of
data with all water quality conditions.

Classification SML, as used in this study, would be useful in creating

alarms when there were higher levels of DFR or algae. However,
regression SML could be used to determine the percentages of DFR or
concentrations of algae, which would be valuable to decide whether the
increases were large enough to necessitate any additional treatment.
Future work could include collecting more data to build regression
models for DFR and algal concentrations. Additional data collection,
capturing seasonal variations, could allow for more robust and reliable
models. While the current models had accuracies up to 98.09 %, more
training and testing data would validate the models’ effectiveness under
all environmental conditions.

5. Conclusions

Overall, this study showed SML could be used to detect and differ-
entiate very low levels of algae and DFR in the intake water for a
drinking water treatment plant. The highest accuracies were only
possible providing at least 15 features (including 13 water quality var-
iables) as model inputs. Among the optimized models, mda had the
greatest testing set accuracy, 98.09 %. If having less than one false alert
per week is a requirement, mda would still be the most accurate (98.00
%), but with different preprocessing methods. Diurnal adjustment was
generally the most effective data preprocessing method tested, partic-
ularly for pH. Nonetheless, the models differed on which features were
beneficial for preprocessing. Onemodel, bagFDAGCV, was most accurate
on the raw data and therefore did not undergo preprocessing for its
optimized version. Some of the most important features for the different
models were phycocyanin-like fluorescence and UVA254. Nitrate and
turbidity were the only features omitted from any optimized models.
Phycocyanin-like fluorescence helped identify Algae events, while
UVA254 helped identify Wastewater events.

Future studies can improve on this research by collecting a larger
sample size, particularly of the Wastewater and Algae events, to further
refine and assess the classification. A longer study period could allow for
more seasonal variations to be captured, which could be used to refine
the model further. While this study used classification models, future
work could use SML regression to estimate the percentage of DFR or
concentration of algae. This would indicate if further treatment would
be necessary and, if so, howmuch. Regression models could also be used
to determine if the percentage of DFR or algae concentrations were
increasing over long time periods. While this data and the models built
from it are specific to the water quality of Lake Mead, similar techniques
could be applied at other intakes, prioritizing having measurements for
the most important features, though they would need to train the models
with their own water quality.
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Natalie Piñon for instrument maintenance and Dr. Mahmut Ersan and
Dr. Faith Kibuye for assistance in cultivating UTEX 2061. We would also
like to thank Dr. Todd Tietjen, Dr. Ariel Atkinson, Dr. Eric Wert, and
Daniel Chan for reviewing the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2024.174690.

References

Arad, J., Housh, M., Perelman, L., Ostfeld, A., 2013. A dynamic thresholds scheme for
contaminant event detection in water distribution systems. Water Res. 47,
1899–1908. https://doi.org/10.1016/j.watres.2013.01.017.

Asheri-Arnon, T., Ezra, S., Fishbain, B., 2018. Contamination detection of water with
varying routine backgrounds by UV-spectrophotometry. J. Water Resour. Plan.
Manag. 144, 04018056 https://doi.org/10.1061/(ASCE)WR.1943-5452.0000965.

Atinkpahoun, C.N.H., Le, N.D., Pontvianne, S., Poirot, H., Leclerc, J.-P., Pons, M.-N.,
Soclo, H.H., 2018. Population mobility and urban wastewater dynamics. Sci. Total
Environ. 622–623, 1431–1437. https://doi.org/10.1016/j.scitotenv.2017.12.087.

Beaver, J.R., Kirsch, J.E., Tausz, C.E., Samples, E.E., Renicker, T.R., Scotese, K.C.,
McMaster, H.A., Blasius-Wert, B.J., Zimba, P.V., Casamatta, D.A., 2018. Long-term
trends in seasonal plankton dynamics in Lake Mead (Nevada-Arizona, USA) and
implications for climate change. Hydrobiologia 822, 85–109. https://doi.org/
10.1007/s10750-018-3638-4.

Blunt, S.M., Sackett, J.D., Rosen, M.R., Benotti, M.J., Trenholm, R.A., Vanderford, B.J.,
Hedlund, B.P., Moser, D.P., 2018. Association between degradation of
pharmaceuticals and endocrine-disrupting compounds and microbial communities
along a treated wastewater effluent gradient in Lake Mead. Sci. Total Environ.
622–623, 1640–1648. https://doi.org/10.1016/j.scitotenv.2017.10.052.
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